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Direct Activation of Bmi1 by Twist1: 
Implications in Cancer Stemness, Epithelial-Mesenchymal

Transition, and Clinical Significance

Kou-Juey Wu, MD, PhD

Cancer stemness is a concept used to describe a minor
population of cells (cancer stem cells-CSCs) residing in a
tumor, which possess self-renewal properties and are resistant
to chemo/radiation therapy. Epithelial-mesenchymal transition
(EMT), a major mechanism of cancer metastasis, is a process
which generates cells with stem-like properties. The relation-
ship between cancer stemness and EMT is well documented
but without detailed mechanistic explanation. Bmi1 belongs to
the polycomb repressive complex 1 (PRC1) which maintains
self-renewal and stemness. Recent results showed that Twist1,
an EMT regulator, directly activates Bmi1 and these two mole-
cules function together to mediate cancer stemness and EMT.
These results provide a molecular explanation of the relation-
ship between cancer stemness and EMT. Bmi1 is frequently
overexpressed in various types of human cancers and can con-
fer drug resistance. Twist1 is also overexpressed in various human cancers with prognostic
significance. The functional interdependence between Twist1 and Bmi1 provides a fresh
insight into the molecular mechanism of EMT-induced cancer stemness. Further investiga-
tion of the mechanisms mediating EMT and cancer stemness will be helpful in the manage-
ment and treatment of metastatic cancers. (Chang Gung Med J 2011;34:229-38)
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Cancer stemness is a concept recently proposed to
explain cancer cells’ resistance to conventional

chemo/radiation therapy.(1) Cancer stem cells (CSCs)
are described as a small percentage of cells residing
in a tumor, which are able to self-renew and have
stem-like properties.(1-3) Stem-like properties are
monitored by different assays such as staining of sur-
face markers, in vitro sphere formation, resistance to

chemotherapeutic agents or radiation, in vivo tumor-
initiating capability, and other assays.(1,4)

Epithelial-mesenchymal transition (EMT) is an
important process by which epithelial cells are con-
verted to mesenchymal cells during embryonic
development.(5-7) This process involves loss of cell
polarity, decrease in cell-to-cell adhesion, and gain
of migration ability.(5-7) EMT is also the critical event
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for tumor metastasis and organ fibrosis. (5-7)

Repression of epithelial markers (e.g., E-cadherin,
plakoglobin and desmoplakin) and upregulation of
mesenchymal markers (e.g., vimentin, fibronectin
and N-cadherin) are the typical marker changes
observed during the EMT process.(5-7) Different tran-
scription factors such as Snail (also known as
SNAI1), Slug (also known as SNAI2), Zeb1 (also
known as TCF8 and δEF1), SIP1 (also known as
Zeb2 and ZFXH1B), E47 (also known as TCF3), and
Twist1 are termed “EMT regulators” since they were
shown to regulate EMT.(8-13) In spite of the demon-
stration of the role of EMT in embryonic develop-
ment, cancer metastasis, and organ fibrosis, it is
unknown whether EMT plays a significant role in
other aspects of cell biology.

This review summarizes recent findings in the
relationship between cancer stemness and epithelial-
mesenchymal transition, the regulation of Bmi1 by
Twist1 and its significance in cancer stemness, and
the role of Bmi1 and Twist1 in contributing to vari-
ous types of human cancers.

The relationship between cancer stem cells and
epithelial-mesenchymal transition

The cancer stem cells possess the ability to self-
renew and generate secondary tumors, which is
described as a “tumor-initiating ability” and is best
assayed by in vivo limiting dilution assays.(4) It is
hypothesized that solid tumors are hierarchically
organized and sustained by cancer stem cells.(14) For
example, after treatment of breast cancer, the surviv-
ing residual tumor cells may be enriched for subpop-
ulations of cells (e.g. CD44+/CD24- or low) with
both tumor-initiating and mesenchymal features.(15)

Different developmental pathways such as hedgehog,
epidermal growth factor receptor (EGFR), Wnt/β-
catenin, Notch, polycomb (Bmi1), stromal cell
derived factor-1 (SDF-1)/chemokine receptor-4
(CXCR4), PTEN, BMP, and TGF-β were shown to
be associated with tumor-initiating abilities.(16) In
addition, various cancer subtypes may have different
subsets of tumor-initiating cells. For example, CSCs
could be isolated or monitored by different cell-sur-
face marker profiles in various types of human can-
cers (e.g. CD133 in brain, colon, pancreas, lung, and
ovarian cancers; CD44 in breast and head and neck
cancers).(4) CSCs are associated with a specific state
of differentiation (e.g. mesenchymal features).(17)

The EMT process in tumor cells usually results
in cells becoming more invasive, metastatic, and
drug resistant, which will lead to the subsequent
demise of cancer patients.(5-7) It is well documented
that EMT will induce tumor progression and aggres-
siveness.(5-7) EMT-derived cells exhibit multi-lineage
differentiation potential similar to mesenchymal stem
cells.(18) However, the mechanisms delineating the
connection between EMT and cancer stemness are
largely unknown. Recent evidences suggest that the
process of EMT generates cells with stem-like prop-
erties.(19) The earliest example is the generation of
proliferative human islet precursor cells during
EMT.(20) Loss of p21CIP1 is associated with the gen-
eration of breast cancer stem cell properties.(21) Other
examples include the demonstration that the EMT
process generates stem-like properties in breast can-
cer cells.(22,23) Since cancer stem cells may have char-
acteristics different from the original tumor cells, or
the tumor cells sensitive to chemo/radiation therapy,
the link between EMT and cancer stemness provides
the explanation that EMT induces tumor progression
through induction of cancer stemness.(24-26)

Bmi1, a polycomb protein, regulates and main-
tains stemness features

Polycomb group (PcG) proteins are chromatin
modifiers involved in the maintenance of embryonic
and adult stem cells and cancer formation.(27-33)

Polycomb group proteins are multimeric transcrip-
tional repressor complexes including polycomb-
repressive complex 1 (PRC1) and polycomb-repres-
sive complex 2 (PRC2).(27-33) Polycomb group pro-
teins can occupy the promoters of developmental
regulators, and silencing of these genes confers stem-
ness in a PcG-dependent manner.(27-33)

Bmi1 is a member of polycomb-repressive com-
plex 1 (PRC1) which maintains chromatin silenc-
ing.(34) Bmi1 was first shown to collaborate with c-
Myc to promote lymphomagenesis and regulate cell
proliferation and senescence through inhibiting the
INK4A locus, demonstrating its role as an onco-
gene.(35,36) Bmi1 was subsequently shown to be
required to maintain normal and leukemic
hematopoietic stem cells and was essential in the lin-
eage specification and multipotency of hematopoiet-
ic stem and progenitor cells.(37-39) In addition, Bmi1
was shown to be involved in the self-renewal of
mammary epithelium, neuronal, pancreatic (includ-
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ing β-cell), and intestinal cells through repressing the
INK4A-ARF locus.(40-47) However, repression of
INK4A-ARF by Bmi1 is dependent on the polycomb-
repressive complex 2 (PRC2).(48) After PRC2 binds to
the promoters of target genes, EZH2 (a member of
PRC2 with histone H3 methyltransferase activity)
methylates lysine 27 of histone H3 (H3K27).(49,50) The
trimethylated H3K27 (H3K27me3) is then recog-
nized and bound by PRC1.(51) Both PRC1 and PRC2
bind to the promoters of target genes to maintain
their repression. Among the target genes of PRC1
and PRC2, repression of the INK4A/ARF locus is
essential for PRC complexes to maintain stem-
ness.(52,53)

Direct regulation of Bmi1 by Twist1: implica-
tions in cancer stemness induced by epithelial-
mesenchymal transition

Twist1, a bHLH transcriptional factor, was first
demonstrated for its critical role in the Drosophila
mesoderm development.(54,55) Twist1 governs cell
movement and tissue reorganization during early
embryogenesis and is a master regulator of gastrula-
tion, mesoderm differentiation, and somatic muscles
patterning and specification.(56) The critical role of
Twist1 in cancer metastasis was recently demonstrat-
ed by the results of increased expression of Twist1 in
human cancers, induction of EMT by Twist1, and the
association of Twist1 with a more aggressive pheno-
type and a worse outcome.(10,57) Twist1 expression is
triggered by different upstream signaling path-
ways.(58) We previously demonstrated that hypoxia
inducible factor-1 (HIF-1) directly regulates Twist1
expression.(59) Recent results also identified a subpop-
ulation of highly tumorigenic cells in head and neck
squamous cell carcinoma (HNSCC) with stem-like
properties and overexpressing Bmi1.(60) Due to the
link between EMT and cancer stemness, we hypothe-
sized that Twist1 may induce the expressions of
stemness genes, resulting in the promotion of EMT
and tumor-initiating ability. Through the screening of
possible activation of different stemness genes, a
tight correlation between Twist1 and Bmi1 was
observed.(61) Different assays such as transient trans-
fection, electrophoretic mobility shift assay (EMSA),
and chromatin immunoprecipitation (ChIP) assays
were subsequently performed to demonstrate the
direct activation of Bmi1 expression by Twist1.
Overexpression of Twist1 or Bmi1 conferred stem-

like properties and induced EMT in head and neck
cancer cell lines. Bmi1 was critical for Twist1
induced stem-like properties and EMT since knock-
down of Bmi1 in Twist1-overexpressing cells abol-
ished both stem-like properties and EMT.
Overexpression of Bmi1 alone could induce EMT.
Twist1 was also critical for Bmi1-induced stem-like
properties and EMT since knockdown of Twist1 in
Bmi1-overexpressing cells reversed EMT and abol-
ished stem-like properties. Quantitative chromatin
immunoprecipitation (qChIP) assays were performed
to test the binding of these two proteins on both E-
cadherin and p16INK4A promoters when either
Bmi1 or Twist1 was knocked down. The results
showed the functional interdependence of Twist1 and
Bmi1 to mediate stem-like properties and EMT since
knockdown of either molecule caused the decreased
binding of the other molecule on both promoters.
Since repression of E-cadherin by Twist1 was not
shown previously,(7) we further mapped three E-box
sites located in the E-cadherin promoter responsible
for Twist1-induced repression by mutagenesis analy-
sis of these three E-box sites. Electrophoretic mobili-
ty shift assay (EMSA) followed by supershifting
with the anti-Twist1 or anti-Bmi1-specific antibody
showed the co-occupancy of the E-cadherin promot-
er by Twist1 and Bmi1. The essential role of EZH2
was also demonstrated using the assays mentioned
above,(61) which was consistent with the reported
result.(62) Chromatin immunoprecipitation assays
showed the direct binding of Twist1 to the Bmi1 pro-
moter. Co-immunoprecipitation assay showed the
interaction between Twist1 and Bmi1. Our results
present the first molecular demonstration of simulta-
neous repression of both E-cadherin and p16INK4A
expression by Twist1 (an EMT regulator) and
Bmi1/EZH2 (components of the polycomb group
proteins). These results provide one of the first mole-
cular delineations of the link between cancer stem-
ness and EMT.(61) Transcriptome profiling analysis
also showed that head and neck cancer cell lines
overexpressing Twist1 or Bmi1 had the transcrip-
tome drifting to the mesenchymal stem cell signa-
tures, but not drifting to the epithelial transcriptome
signatures.(61) This result is consistent with the report-
ed result that cancer stem cells display mesenchymal
features.(17) Finally, the important role of Bmi1 in
cancer stemness is supported by the recent result that
Bmi1 was critical in the maintenance of prostate can-
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cer stem cells.(63)

Cancer stemness, Bmi1, and drug resistance
Tumor- and metastasis-initiating cells usually

develop treatment resistance, which is shown in
recurrent ovarian cancer.(64) Activated CD8 T cells
can stimulate mammary tumor cells to go through
EMT and increase their tumor-initiating ability and
chemotherapeutic resistance.(65) Bmi1 is shown to
confer different kinds of resistance (radiation, 5-fluo-
rouracil, docetaxel) in different cancers.(66-68)

Recruitment of the DNA damage response machin-
ery is shown to cause Bmi1-induced radiation resis-
tance.(69) The detailed molecular mechanisms of treat-
ment resistance are still largely unknown. Future
experiments to dissect the signaling pathways regu-
lating different kinds of treatment resistance will
require intensive investigation. Finally, the observa-
tion and concept of cancer stem cells could mimic
the “minimal residual disease” constantly mentioned
during the treatment course of certain leukemias.(70)

Expression of Twist1 and Bmi1 and their con-
tribution to clinical significance

Bmi1 overexpression is shown in various can-
cers such as chronic myeloid leukemia, multiple
myeloma, head and neck squamous cell carcinoma,
squamous cell carcinoma of the tongue, breast can-
cers, non-small cell lung cancer, hepatocellular carci-
noma, gastric carcinoma, Ewing sarcoma, colon can-
cer, bladder cancer, esophageal cancer, cholangiocar-
cinoma, ovarian cancer, endometrial cancer, cervical
cancer, and medulloblastoma.(71-95) Bmi1 cooperates
with H-Ras to induce aggressive breast cancer.(96)

Bmi1 collaborates with BCR-ABL or interacts with
PLZF/RARA to mediate leukemic transforma-
tion.(97,98) Finally, Bmi1 induces apoptotic resistance
through activation of the IKK-NF-kB pathway.(99)

The prognostic impact of Twist1 was demonstrated
in various cancers,(10,59,100-116) but the interdependence
between Twist1 and Bmi1 has never been explored.
The cooperative role between Twist1 and Bmi1 was
demonstrated in HNSCC cases since only co-overex-
pression of both proteins correlates with repression
of E-cadherin and p16INK4A and the worst progno-
sis of HNSCC patients.(61) Patients expressing either
Twist1 or Bmi1 alone have a better prognosis than
those co-expressing both proteins. This observation
further strengthens the model that Twist1 and Bmi1

interdependently promote EMT and cancer stemness,
resulting in an aggressive tumor behavior and a dis-
mal outcome in HNSCC.(61) Further confirmation of
this functional interdependence will require examina-
tion of more tumor samples from various tumor
types.

Conclusions and future perspectives
Different mechanisms such as chromatin modi-

fication (e.g. promoter hypermethylation) and
recruitment of chromatin modifiers such as
HDAC1/HDAC2, AJUBA/PRMT5, or PRC2 by
EMT regulators were shown to mediate E-cadherin
repression.(117-119) However, there was no previous
demonstration of the involvement of PRC1 complex
in the repression of E-cadherin. In spite of the
repeated demonstrations that p16INKA is regulated
by Bmi1,(35,36,47) the involvement of an EMT regulator
in the repression of p16INK4A was not shown. Our
results are the first demonstration of the requirement
of an EMT regulator and PRC1/2 complexes to
simultaneously repress E-cadherin and p16INK4A.
The simultaneous requirement of transcription regu-
lators and chromatin modification complexes (PRC1
and PRC2 in our case) to mediate E-cadherin and
p16INK4A repression provides a mechanistic exam-
ple of the relationship between EMT and cancer
stemness.

Bmi1 is well documented to maintain stem-
ness.(34,37-39) Twist1 and Twist2 also override onco-
gene-induced premature senescence in cancer cells
by inhibiting the activity of p16INK4A and
p21CIP1.(120) From our results, it appears that Bmi1
acts together with Twist1 to carry out multiple func-
tions, including EMT induction and escape from
oncogene-induced premature senescence. Other
functions such as induction of telomerase activity,
inhibition of TGF-β signaling, and repression of
PTEN tumor suppressor were also mediated by
Bmi1,(121-123) which may contribute to Bmi1-mediated
functions.

In conclusion, the relationship between cancer
stemness and EMT is well established. Our demon-
stration that Twist1 activates Bmi1 and both mole-
cules function interdependently to mediate cancer
stemness and EMT provide a molecular delineation
of the relationship between cancer stemness and
EMT. Investigation of the regulation of Bmi1 or
other stemness genes through different mechanisms
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should be the subject which needs immediate atten-
tion to further explore this relationship. The informa-
tion obtained from these investigations will be valu-
able for the management and treatment of metastatic
cancers.
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