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Roles of p63 in Epidermal Development and Tumorigenesis

Jeng-Yuan Yao, Jan-Kan Chen

Epidermis is composed mainly of keratinocytes and is the major 
barrier of human body. The development and maintenance of normal 
epithelial structures and functions require the transcription factor p63. 
The p63 gene encodes proteins with structures similar to that of p53, 
including an N-terminal transactivation (TA) domain, a DNA-binding 
domain and a carboxy-oligomerization domain. TAp63 and ΔNp63 (p63 
isoforms without TA domain) regulate a wide range of target genes that are 
important for embryonal development and epithelial integrity. Mutations 
of p63 gene cause epidermal abnormalities characterized by ectodermal 
dysplasia. Recent reports have indicated that p63 plays important role in 
tumorigenesis as well. However, the relative importance of TAp63 and 
ΔNp63 in epidermal development and tumorigenesis remains mostly 
unclear and awaits further investigation. In this review, we summarize the 
current knowledge on the structure and function of p63 and its isoforms. 
(Biomed J 2012;35:457-63)
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Review Article

The human p63 gene is located on chromosome 3q27 
and composed of 15 exons spanning more than 250 

kb.[1] The p63 gene contains two promoters, alternative 
promoter usage and C-terminal splicing generate two 
groups of three isoforms named TAp63, β, γ and ΔNp63, 
β, γ [Figure 1(A)].[2] The TAp63 isoforms contain the 
N-terminal transactivation (TA) domain and are capable 
of transactivating target genes. In contrast, the ΔNp63 
isoforms lack the TA domain and are believed to act as 
negative regulators of the TAp63 function.[3] Both p63 
and p53 genes encode proteins with similar functional 
domains, high degrees of sequence homologies, and are 
suggested to regulate common target genes [Figure 1(B)]. 
The p63α protein contains an additional sterile alpha motif 
(SAM) domain that is not found in p53, it is a protein-
protein interaction domain believed to be involved in the 
developmental processes.[4,5] Because of the sequential 
similarities, TAp63 proteins are able to bind and trans-
activate many p53 target genes;[6] however, many studies 
indicated that TAp63 proteins can bind DNA through re-
sponsive elements related to p63 but not p53.[7-9] Because 
of the lack of TA domain, ΔNp63 was reported to block 
p53 or TAp63-mediated transactivation.[2] Moreover, 

ΔNp63 has subsequently been demonstrated to transactivate 
their own target genes rather than just a dominant negative 
regulator over TAp63 and p53.[10-12] The functions of dis-
tinct p63 isoforms have not been defined, both TAp63 and 
ΔNp63 mRNA were found to be present in mouse embryos 
and mature epithelia; however, the ΔNp63 protein level is 
much higher than TAp63 in most of the postdevelopmental 
tissues.[13,14] In contrast, TAp63 is more strongly expressed 
in oocytes than ΔNp63, implying their different regulatory 
roles during development.[15,16]

p63 in embryonic epithelia

p63 is expressed in the ectodermal surfaces of the 
limb buds, branchial arches and epidermal appendages in 
mouse embryo.[17] The function of p63 in epithelial devel-
opment was first observed in p63-/- mice. p63-null mice 
were born alive but soon died of dehydration due to severe 
defects in the development of stratified epithelial barrier.
[17,18] Reintroduction of TAp63α in p63-/- mice showed only 
limited areas of epithelialization, whereas reintroduction of 
ΔNp63α showed better epithelialization, although still with 
limited epidermal basal layer formation.[19] Other major de-
fects in p63-/- mice include truncated limbs and deformed 
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craniofacial structures.[17,18] The skin of p63-negative mice 
was not stratified, did not express differentiation mark-
ers and was arrested in its early developmental stage.[18] 

p63-negative mice were also found to lack the structures 
associated with epidermal-mesenchymal interactions 
during embryonic development,[18,20] the epidermis were 
found to undergo nonregenerative differentiation, leading 
to the absence of all squamous epithelia and their deriva-
tives, including mammary, lacrymal and salivary glands.[17] 
Later study showed that TAp63 was the first p63 isoforms 
expressed during mouse embryogenesis and was required 
for the initiation of epithelial stratification program and 
the inhibition of terminal differentiation.[21] In the contrary, 
ΔNp63 counteracted TAp63 function and promoted the 
maturation of embryonic epidermis.[21] In accordance with 
the  above observations, disruption of ΔNp63 expression 
in zebrafish was found to result in the failure of epidermal 
morphogenesis and fin truncations.[22,23] At the molecular 
level, ΔNp63 has been shown to regulate genes characteris-
tic of the epidermal basal layer (K14) and TAp63 regulate 
genes characteristic of the superbasal layer’s (Ets-1, K1, 
transglutaminases, involucrin).[19] In addition, ΔNp63 was 
suggested to integrate multiple signaling pathways required 
for the tooth and hair placodes formation by regulating 
Bmp-7, Fgfr2b, jag1, Notch1 expression. In turn, ΔNp63 
expression was promoted by BMP2, BMP7 and FGF10.[24] 
In addition, p63 was also suggested to regulate the cell 
proliferation and differentiation of tooth germ epithelial 
cells.[25] Taken together, p63 appeared to be required for the 
maintenance of certain progenitor cell populations that are 
necessary for epithelial turn over and development, while 

ΔNp63 promoted TA cell conversion and keratinocyte 
terminal differentiation [Figure 2].

p63 in adult epithelia

The corneal epithelium exhibits high level of cellular 
turn over under normal physiology and in wound healing. 
Corneal epithelial cells are driven from limbal epithelial 
stem cells, a special population of progenitor cells located 
in the basal layer of the corneoscleral limbus. In the corneo-
limbal surface, p63 was found to be expressed in the basal 
layer of the limbal epithelium but not in the cornea,[26,27] 
suggesting a role of p63 in limbal stem cell maintenance 
and differentiation. The successful reconstruction of limbal 
deficient eyes with cultured limbal epithelial cells,[28] and 
the observation that a higher percentage of the p63-positive 
cell in the prosthesis led to a higher successful reconstruc-
tion rate strongly supported the above notion.[29] However, 
the expression patterns of p63 and other keratinocyte stem 
cell markers in rat cornea appeared to be differed from that 
of human and rabbit. In an earlier report, we found that 
the expression of p63 in rat cornea was altered with age. 
In the neonates, p63-positive cells were present in limbus, 
peripheral cornea and central cornea. In 1-month-old rats, 
they were present in central and peripheral cornea, but not 
in limbus, and in adult rats (6 month and older), the p63-
positive cells were present only in the peripheral cornea.[30,31] 
In rabbits, the expression pattern was obviously different, 
we found that the expression of TAp63 was expressed at the 
highest level in limbus, decreased in peripheral cornea by 
approximately 10-fold and was undetectable in the central 
cornea. Rather similarly, ΔNp63 was also expressed at the 
highest level in limbus, decreased by approximately 35% 
in peripheral cornea, and was undetectable in the central 
cornea.[32] The expression of these proteins exhibited 
clear effect in the limbal explant cultures, we showed that 

Figure 2: TAp63 and ΔNp63 exert different roles during epidermal 
development. TAp63 isoforms are firstly expressed in the uncommitted 
ectoderm and act as a key switch to initiate epithelial stratification. 
Np63 isoforms are expressed after the ectoderm has committed for 
epithelial stratification.

Figure 1: (A) Structure of p63 gene. The alternative promoter 
usage drives the expression of TAp63 (with transactivation domain) 
and ΔNp63 (without transactivation domain) isoforms. In addition, 
alternative splicing at the 3` end gives rise to 3 different p63 variants 
(α, β and γ). (B) Schematic presentations of the protein domains 
of p53 and p63. p53 and p63 share homologous protein domains, 
including a transactivation domain, a DNA-binding domain and 
an oligomerization domain. The αforms of p63 variants possess a 
C-terminal SAM domain followed by a transactivational inhibitory 
domain (TID).
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knockdown of TAp63 expression inhibited the proliferation 
but promoted the differentiation of cultured rabbit limbal 
keratinocytes. Knockdown of ΔNp63 expression also 
inhibited cell proliferation, however, exerted no obvious 
effect on cell differentiation.[32] Recently, we showed KGF 
is a potent growth stimulator for the epithelial outgrowth 
from limbal explants and the stimulation was dependent 
on p38-mediated ΔNp63α expression.[33] Stimulation of 
limbal epithelial outgrowth by KGF was significantly 
reduced by knockdown of ΔNp63α, strongly supported a 
role of ΔNp63α in the regulation of limbal epithelial cell 
proliferation and differentiation.

Taken together, TAp63 and ΔNp63 appeared to play 
distinct roles in regulating proliferation and differentiation of 
the limbal epithelial cells, and were probably required for the 
maintenance of the limbal and corneal epithelial integrity.

p63 as a transcription factor

The functions of distinct p63 isoforms have not been 
clearly elucidated. Although both TAp63 and ΔNp63 tran-
scripts were found in mouse embryo and mature epithelia, 
the ΔNp63 protein level was shown to be much higher 
than TAp63 in most of the postdevelopmental tissues.[13,14] 
In contrast, TAp63 was shown to be strongly expressed in 
oocytes.[15,16]

Due to isoform diversity, intensive studies have focused 
on examining the signaling pathways regulated by p63 and 
on genes that may be activated or repressed. Since p63 and 
p53 proteins are structurally highly homologous with very 
similar DNA-binding domains.[2,34] the initial studies were 
focused on whether p63 regulates p53 target genes. In this 
regard, TAp63 has been suggested to transactivate p53-
responsive genes, whereas ΔNp63 acts in a dominant nega-
tive manner.[2] Recently, a transcriptional inhibitory domain 
(TID) located between the SAM domain and the C-terminus 
has been identified in p63α and was shown to mediate the 
repressive effects of p63α variants.[35] The C-terminus of 
TAp63α proteins is proposed to interact with the TA do-
main to prevent its binding to coactivator proteins.[35] This 
was supported by the report shown that TAp63γ stimulates 
the transcription of p53 responsive gene, whereas TAp63α 
showed little transactivation activity. In addition, ΔNp63α 
was reported to repress the transcription activity of p53 and 
TAp63, but ΔNp63γ could only repress the transcription ac-
tivity of p53.[2] Another study demonstrated that TAp63 binds 
directly to the p53-responsive genes, including mdm2, bax, 
PERP and NOXA, suggesting possible functional overlaps 
of TAp63 and p53 in regulating the genome stability and 
apoptotic functions of the p53.[36,37]

Transient transfection of cells with TAp63 variants 
has been reported to induce both cell cycle arrest and 
apoptosis.[2,38,39] These studies showed that TAp63γ variant 

exhibited the greatest transactivation activity, in contrast, 
TAp63α exhibit less or no activity. A similar study confirmed 
that ΔNp63 variants exhibited opposite effects on cell cycle 
regulation and apoptosis compared to that generated by 
TAp63 variants.[2] Loss of TAp63 has been shown to result 
in failure of p53 expressing cells to undergo apoptosis in 
response to DNA damage,[36] suggesting the involvement of 
p63 in regulating cell fate under genotoxicity. In contrast, 
p53 knockout mice exhibited no developmental epithelial 
disorders, suggests a distinctive regulatory function from 
that of p63. Further studies to delineate the exact roles of six 
p63 variants in keratinocyte differentiation and proliferation 
is still yet to come.[40] ΔNp63α has also been reported to act 
as a transcriptional repressor required for ventral specifica-
tion in the ectoderm of gastrulating embryos.[22] It could also 
repressed the gene transcription through fusing with the yeast 
transcription factor Gal4,[41] suggesting a unique regulatory 
mechanism independent of its promoter binding activity.

Regulation of p63 stability and activity

The expression of TAp63 in normal tissue is highly 
restricted and has rarely been reported. Recently, TATA-
binding protein-like protein (TLP), a protein regulates stress-
mediated cell cycle checkpoint and apoptotic pathways, was 
shown to upregulate the transcriptional activity of TAp63.[42] 
However, the mechanism underlying such regulation awaits 
further study. The TAp63 protein stability was reported to be 
regulated by its transactivation domain (TA), at the amino 
terminal residues 50 to 69.[43] Moreover, WWP1 E3 ubiquitin 
ligase was reported to bind, ubiquitinate, and destruct both 
ΔNp63α and TAp63α through the proteasome pathway.[44] 
Other studies showed that Plk1 was able to bind to TAp63 
at Ser-52 of the TA domain leading to its phosphorylation, 
which in turn led to decreased TAp63 protein stability and 
TAp63-induced cell death.[44,45] EGFR pathway has been 
reported to regulate the expression of ΔNp63α.[46] ΔNp63α 
expression was also regulated by the PI3K pathway and 
plays a critical role in the survival and proliferative capacity 
of the squamous epithelia.[47] The PI3K pathway activity was 
reported to be implicated in a number of human diseases 
including diabetes and cancer.[48,49]

Our previous study showed that in NPC076 cell, ΔNp63 
imposes a dual-regulatory effect on its own promoter ac-
tivity.[50] We showed that ΔNp63 transcriptional activity 
is downregulated when ΔNp63 is present in low levels. 
In contrast, it was upregulated when ΔNp63 is expressed 
at higher levels. The autoregulation of ΔNp63 gene tran-
scription was mediated through activation of STAT3 and 
its subsequent binding to the STAT3 response element in 
its own promoter.[51] We also showed that STAT3 enhances 
the proliferation of limbal keratinocytes through a ΔNp63-
dependent mechanism.[52]
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Moreover, we also found that inhibition of glycogen 
synthase kinase-3beta (GSK-3beta) by lithium chloride 
(LiCl) leads to increased ΔNp63 promoter activity and 
protein expression in HEK 293T cells.[53] We showed that 
GSK-3beta inhibitor stimulates ΔNp63 promoter activ-
ity through beta-catenin responsive element. Beta-catenin 
interacted with Lef-1 to regulate ΔNp63 promoter activity 
and protein expression.[53]

In vivo studies showed that ΔNp63 isoforms exhibited 
a longer half-life than TAp63 isoforms and deletion of the 
TA domain reduced the degradation of TAp63 protein by 
26S proteasome pathway.[43,54] The FWL motif, that was 
reported to be essential for p53 degradation, also promoted 
mdm2-mediated TAp63 degradation.[55-58] Other study 
showed that TAp63α isoform exhibited a longer half-life 
than TAp63γ isoform, and the C-terminal end appeared to 
play a role in their stability.[58] The C-terminal SAM domain 
in the α isoform was reported to protect p63 through FWL 
motif-mediated degradation.[35,59] The degradation of ΔNp63 
was also reported to process through proteosome-dependent 
pathway and stratifyin (14-3-3σ) and RACK1 were believed 
to be involved.[60]

Cellular protein species that have been reported to 
interact with TAp63 to stimulate TAp63 activity include 
ASPP1,[61] ASPP2,[61] PML,[62] Sp1,[63] SSRP1 and p300.[64,65] 
These studies suggested that all p53 family members share 
common coactivators. Intriguingly, p14ARF was reported 
to activate and stabilize p53, but inhibited p63.[66]

p63 activity was also regulated by post-translational 
modifications. Under genotoxic stresses, some Ser/Thr 
residues of TAp63α and γ have been shown to be dephos-
phorylated leading to protein stabilization.[54] However, in 
Saos2 osteosarcoma cells, genotoxic stresses was shown 
to promote the degradation of ΔNp63α.[67] In addition, the 
SUMOylation of the ∆Np63α at a single lysine reside, k637, 
was reported to promote the proteasome-dependent degra-
dation.[68] The aforementioned studies suggested multiple 
mechanisms are involved in the regulation of p63 stability.

p63 in cancers

Functional studies of p63 and p53 showed a 
close relation between developmental processes and 
tumorigenesis.[69] There have been numerous studies 
shown that p63 plays critical roles in cell cycle arrest, 
DNA damage repair process and apoptosis; however, 
its precise role in cancer remained unclear. Yang et al., 
(1998) were the first to show that ΔNp63α is the primary 
p63 variant expressed in squamous epithelial tissues.[2] 
Overexpression of p63 has been found to be a frequent 
event in some human cancers, including 93% of squamous 
cell carcinomas of the lung, 10% of ductal carcinomas 
of the breast and 25% of endometrioid carcinomas of 

the ovary.[70] On the other hand, p63 was rarely detected 
in cancers developed from tissues that do not normally 
express p63, including breast and lung adenocarcinomas, 
possibly due to the lack in these tumors of the epithelial 
basal cells where p63 is normally expressed.[40,70] In ad-
dition, a recent report indicated that p63 plays important 
roles in the development and progression of grade  I/II 
endometrial adenocarcinoma.[71] It has been suggested 
that dysregulated expression of p63 is often correlated 
with amplification of its genomic locus, 3q27-28 and is 
frequently occurred in human epithelial cancers.[40]

Studies on a cohort of 245 esophageal tumors showed 
that both TAp63 and ΔNp63 isoforms were upregulated at 
the transcriptional level in squamous cell carcinoma.[72] 
ΔNp63α was identified to be expressed in squamous epi-
thelial tissues and was believed to antagonize the tumor 
suppressor function of p53.[2] Although TAp63 is func-
tionally and structurally similar to the tumor suppressor 
p53, the functional role of its expression in this context 
has not been fully demonstrated. Numerous recent stud-
ies have suggested that TAp63 exerted different effects in 
carcinogenesis. For instances, loss of p63 expression was 
associated with poor prognosis of the bladder carcinoma[73] 
and was shown to increase cell migration and expression of 
genes involved in tumor invasion and metastasis.[74] Another 
study showed that the expression of p63 was required for 
p53 expressing cells to undergo apoptosis in response to 
DNA damage.[36] Most recently, p63 and p53 were found 
to repress carcinogenesis through repressing telomerase 
expression.[75] In addition, TAp63 was reported to trigger 
cell senescence and halt tumorigenesis irrespective of p53 
expression status.[76]

Ectopic expression of ΔNp63α was reported to increase 
the half-life of the hypoxia inducible factor 1α (HIF-1α),[77] 
leading to upregulation of the vascular endothelial growth 
factor (VEGF) due to elevated binding of HIF-1α to the 
VEGF promoter.[77] ΔNp63α was also reported to interact 
with the B56α regulatory subunit of the protein phosphatase 
2A and glycogen synthase kinase 3β proteins[78,79] that were 
suggested to inhibit the destruction complex of adenomatous 
polyposis coli.[78,79] Inhibition of the destruction complex 
downregulated phosphorylated β-catenin leading to tran-
scriptional activation of matrix metalloproteinases.[78,79] We 
recently found that the proliferation of NPC-076 cells was 
greatly suppressed when ΔNp63 was silenced by specific 
ΔNp63 siRNA.[80] This study also showed that knockdown 
of ΔNp63 resulted in the upregulation of CKIs, including 
p27 and p57 in both mRNA and protein levels and increased 
G1 phase cell and apoptotic cell populations. These findings 
suggested that ΔNp63 plays important roles in the regulation 
of NPC-076 cell-cycle progression, and contributes to the 
maintenance of NPC-076 tumor cell phenotype.
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Our previous studies also showed that the transcrip-
tional activity of the TAp63 promoter and TAp63 protein 
level were both upregulated by an increased c-jun expres-
sion in Hep3B human hepatocellular carcinoma cell.[81] The 
elevated TAp63 expression was coincided with an increased 
binding of c-jun to the TAp63 promoter. Moreover, knock-
down of TAp63 expression by shRNA led to an increased 
proliferation of Hep3B cell compared to that of the mock 
cell, suggesting a growth suppressive effect of TAp63 ex-
pression.[81] Ectopic expression of p53 in p53-deficient cell 
(Hep3B) reduced TAp63 promoter activity and knockdown 
of TAp63 attenuated doxorubicin-induced cell growth arrest 
by promoting cell cycle progression via increasing the per-
centage of G2/M cells.[82] Moreover,  knockdown of TAp63 
increased cell sensitivity to doxorubicin-induced genomic 
damage. Our results suggested that TAp63 may play a com-
pensatory role in p53-deficient cancer cells in cell cycle 
regulation and DNA damage repair.[82] Collectively, these 
studies suggested a tumor suppressor function for TAp63. 
However, in other studies, TAp63 was found to function as 
a proto-oncogene when it was improperly reactivated.[83] Yen 
et al., showed that the expression of TAp63 in esophageal 
carcinoma was upregulated during early carcinogenesis and 
downregulated as the tumor progresses.[84] Despite the above 
mentioned studies, the exact roles of p63 in tumorigenesis 
have been unclear.

Conclusions

High levels of p63 expression were found in the basal 
cells of many stratified epithelial tissues where a major-
ity of human neoplasm develops. It is therefore suggested 
that p63 not only is essential for epithelial development, it 
may also be involved in pathological conditions, including 
cancer development and DNA damage repair. The balance 
between TAp63 and ΔNp63 isoforms appears to be important 
in regulating cellular fates, such as maintenance of uncom-
mitted stem cell vs. differentiation, survival vs. apoptosis, 
and tumorigenesis vs. tumor suppression. We suggest that 
understanding the roles of interplays between TAp63 and 
ΔNp63 could probably provide useful information in ocular 
surface reconstruction of the limbal deficient eyes, normal 
epithelial development, carcinogenesis and the protective 
effect of p53 deficient cells under genotoxicity.
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